Identification of Solar Features via Markov Random Fields

Michael J. Turmon
M/S 525-3660

Jet Propulsion Laboratory
Pasadena, CA 91109

Abstract

The solar chromosphere, seen in ultraviolet light, con-
sists of roughly three classes: plage (bright magnetic dis-
turbances), network (hot boundaries of convection cells),
and background (cooler interiors of such cells). These
classes contribute differently to the total amount of ul-
traviolet radiation reaching Earth’s upper atmosphere.
It is of scientific interest (e.g., in studying global warm-
ing) to relate plage and network area and intensity to this
total UV irradiance. We treat this problem as inference
of the underlying class of a pixel based on the observed
intensity, perhaps seen through a point-spread function.
The spatial information known to solar physicists is en-
coded in a Markov random field (MRF') smoothness prior
and used in a Bayesian inference setup. Also of interest
is understanding plage shape and evolution. To this end,
a plage structure is represented as a planar graph with
associated heights forming a spatial ‘membership func-
tion’. This membership function biases the underlying
MREF so that plages occur in a physically reasonable way.
Sample results are shown.

1 Introduction

The solar chromosphere, observable in ultraviolet light,
roughly consists of three classes: plage (bright magnetic
disturbances), network (hot boundaries of convection
cells), and background (cooler interiors of these cells).
Figure 1 shows a full image and detail examples of the
classes. Plages appear as irregular groups of clumps,
seldom near the solar poles. It is believed [14, p. 319]
that the same magnetic disturbances that are coincident
with sunspots also underlie the plage phenomenon. Sim-
ilar to sunspots, plages experience a cycle of formation
and dissipation, starting out as a relatively compact re-
gions and decaying over many days into a diffuse and
broken-up cluster [18, p. 317]. The cell-structured net-
work has little contrast with the background, is spatially
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homogeneous, and persists for tens of hours. The cells
(difficult to see in this halftoned rendering) have a char-
acteristic size, and it is thought that they arise due to
convective processes in the plasma making up the solar
atmosphere [18, p. 126].

The three classes contribute differently to the ultravi-
olet (UV) radiation reaching Earth’s upper atmosphere,
with the plages and magnetic network giving the largest
contribution. While this radiation cannot be sensed di-
rectly from the ground, the features giving rise to it can
be. Such measurements are inputs to models of solar
irradiance [17] which are crucial to understanding phe-
nomena such as global warming and photochemical pro-
cesses in the upper atmosphere [16].

Also of interest is the evolution of plages. As men-
tioned above, a typical sequence has been described:
from plage emergence as a shape of relatively smooth
boundary, to expansion, and then eventual dissolution
as an irregular, tentacled form. However, the under-
standing is of a qualitative and anecdotal sort (e.g., for
related work, [14, p. 284]), and a more quantitative de-
scription of anticipated plage shapes and the evolution
of plage regions would be of value.

In both sorts of problem described above one reduces
a series of images, comprising perhaps 500MB of data,
to a time series of areas and intensities or plage descrip-
tions. For example, per-class areas and mean intensities
can be represented in about 48 bytes per 9MB image.
The description of the features of interest for one plage
might take a few KB per image, depending on the activ-
ity level. These time series distill the diffuse information
in the large data set into a scientifically usable form, at
least for the tasks at hand.

1.1 Data

The primary source of data for this study is the set of
Call K full-disk spectroheliograms that has been col-
lected, daily or as observing conditions permit, at Sacra-
mento Peak National Solar Observatory in Sunspot, NM
from the mid-sixties onward. (The ‘K line’ is the spec-



Figure 1: The left panel shows a full-disk chromospheric image from 15 July 1992. The film calibration wedge (see
text) is visible at top left. In the center is a detail image of the rather decayed plage pair in the northwest quadrant
of the sun. The southeast quadrant has a younger, more concentrated plage. On the right is a detail of the center
of the disk, with considerable contrast enhancement, showing just the network and background.

tral absorption line at wavelength 393.4nm. Through
an involved physical process, the chromosphere can be
observed there in isolation from other layers of the so-
lar atmosphere. At most frequencies the visible light
emitted from the photosphere dominates.) The images
take in the entire Sun as seen from Earth, and they are
recorded on photographic films which are stored at the
observatory. An interval of these films, from the mid-
eighties forward, has been digitized to 2K x2K pixels, at
which point atmospheric blurring (and to a lesser degree,
telescope diffraction) limits resolution.

Other sources of information about solar active re-
gions are available, but have not been used directly
in this study. Of most importance are magnetograms,
which are high-resolution images of the line-of-sight com-
ponent of the magnetic field on the sun. Since plages
are a reflection of an underlying magnetic disturbance,
practiced observers use magnetograms in conjunction
with K-line images to determine the extent of a plage.
There are also optical images from other spectral lines
— notably Ha at 656.3nm, which encodes processes at
a higher level in the chromosphere than the K-line im-
ages — and ‘continuum’ images which are not spectrally
limited and contain photospheric information.

Observations from these sources are taken regularly
but they are not coordinated: they are taken at dif-
ferent times and from different parts of the planet. A
system called the PSPT (Precision Solar Photometric
Telescope) has been developed [5] to standardize the ob-
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Figure 2: Schematic of the observation process show-
ing origin of energy in the chromosphere, attenuation
by limb-darkening, blurring by PSF, attenuation by at-
mosphere and inconsistent exposure time, and nonlinear
transformation to film density.

servation regimen; nevertheless, the historical database
embodied in the Sac Peak K-line images will remain in-
valuable to researchers.

1.2 Preprocessing

On its way from the sun to the film, the chromospheric
emission is transformed by several processes shown in
figure 2. In principle these can be incorporated in the in-
ference mechanism, but for simplicity and computational
reasons, it is more practical to invert them separately, in
reverse order from film backward.



1. Film responds nonlinearly to incident light, say
through a monotone function ¢, so the digitized film
density level must be translated into a light inten-
sity. This amounts to application of the monotone
transformation ¢! individually to each pixel in the
image. To recover the transformation, there is a cal-
ibrated step wedge in a corner of each image. Each
segment of the wedge has been exposed at a known
intensity level. This fixes ¢ at (in this case) eight
points and allows it to be inverted.

2. Atmospheric clarity and film exposure times differ
from day to day, resulting in a multiplicative at-
tenuation «. The approximate scale factor on each
day relative to some reference day can be obtained
by finding the intensity of the ‘quiet sun’, or those
regions of the sun without any transient activity.
Each image is rescaled to compensate for this tem-
poral variation.

3. Apart from the transparency changes described
above, the observed image is subject to atmospheric
scattering and blurring which varies daily depend-
ing on observation conditions. This distortion is
well-modeled by gaussian or lorentzian point-spread
functions. Currently, the PSF is not taken in to ac-
count, although it can be estimated from the image
set [15]. (Since the sun is not a point source, this
determination is not trivial.)

4. Solar emissions are affected by ‘limb-darkening’, a
spatially varying attenuation LD(-) which is unity
at disc center and decreases gradually as one moves
to the edge of the disc. This is due to changes in the
apparent width of the chromospheric shell as seen
from Earth (see fig. 2). Theory suggests [14, p. 133]
a polynomial dependence of LD on p = cosf, where
the angle § = 0 at disc center and 7/2 at the edge.
Consequently we employ several images to estimate
the coefficients of a quadratic attenuation function,
constrained to LD(u = 1) = 1, and rescale the im-
age accordingly. For details, see for example [13].

The result of these preprocessing steps is a pixel-by-pixel
transformation of the original image into a ‘flattened’
image.

2 Image Decomposition

First we discuss the problem of partitioning the image
into plage, network, and background components. Gen-
erally, scientists either apply a threshold across the flat-
tened image to determine plage areas, or manually sur-
round the plages with polygons. The first method, while

simple and objective, ignores all spatial information that
is available. The second method clearly uses a large
amount of side information possessed by the scientists,
but is also highly subjective, difficult to even describe,
and hard to repeat.

Due to the strong prior information available to us
about the images, we adopt the Bayesian framework of
inference of underlying pixel classes based on the ob-
served intensity. Denoting pixel sites s = [s1 s2] in an
image domain N, and defining matrices of class labels
x = {xs}sen and observed intensities y, the posterior
probability of labels given data is

P(x|y) = P(y |x)P(x)/P(y) < P(y[x)P(x) . (1)

The maximum a posteriori (MAP) rule maximizes this
probability:

% = argmax log P(y | x) + log P(x) . (2)

As pointed out by Ripley [11], the first term is the fa-
miliar likelihood function, telling how the data is gotten
from the labels; the second is the prior probability of a
given labeling. In practice, the first term forces fidelity
to the data while the second penalizes unlikely rough
labelings.

Prior models may be specified in many ways; we have
used the Markov field models introduced by Besag [2]
and Geman and Geman [6]. These models are charac-
terized by

P(xs:k|xN\{s}):P(xs:k|xN(s)) (3)

with respect to a neighborhood structure N(s) C N,
where \ is set difference. This simply expresses the
Markov property that far-off sites do not influence
the distribution of labels when the local neighbors are
known. To define such a model, one needs to specify
these conditional distributions and a typical choice is

Pz, =k|aon) = 2 exp[—B) 1(zs # )] (4)

s"€N(s)

where N(s) is taken as the 8-pixel neighborhood cen-
tered around a site s, and Z, is a constant chosen to
make the distribution sum to unity. For 5 = 0, the dis-
tribution is uniform on all 3°*"(™) labelings, and as 3 is
increased, smoother and smoother labelings are favored.
For example, the right-hand panel of figure 3 shows a
typical (random) image from the MRF prior P(x) (no
data is used in generating it). While this image does not
precisely match the expected plage/network pattern, the
match is much better than the field of independent la-
bels at each site shown on the left. We discuss priors
more tailored to this application in section 4.



Sample from Uniform Prior

Sample from MRF Prior

Figure 3: On the left is a typical labeling drawn from the
uniform prior on {1,2,3}". On the right is one drawn
from an iterative approximation to the MRF prior with
smoothness 3 = 0.7.

The remaining ingredient is the likelihood

P(y|x) = [] P |e.) (5)

sEN

where we assume that intensities are independent con-
ditional on the labels being known. The three densities
P(y|x = k) can be estimated from labeled data supplied
by scientists. It is not surprising that the plage and net-
work intensities have a heavy tail — making a normal
distribution inappropriate. Kolmogorov-Smirnov and
Cramér-von Mises distributional tests [9] confirm that
the lognormal distribution is a good model for the per-
class intensities.

After finding these distributions, we may use the
Hammersley-Clifford theorem [8, thm. 2.2.1] to rewrite
the cost function of (2) as

3] (G =TRSO

= 20x§
(6)

where N (s) determines the neighborhood relation in the
last sum. The tradeoff between consistency of each ob-
served intensity with the mean of its assigned class, and
agreement of neighboring class labels, is apparent. We
also note that if the class variances are identical, and
B = 0, we recover the threshold rule currently used in
practice.

However, with 8 > 0, the optimization becomes cou-
pled across sites, and is entirely intractable for our three-
class problem. To tackle this problem we have fol-
lowed the well-known numerical method known as the
Gibbs sampler, detailed in [6] (see also [11, p. 99]). In
brief, this works by cycling through each site, computing

s,s’ nbrs

P(zs|ys, Tn(s)) for each class, and choosing the next la-
bel from this distribution. For finite label spaces, the re-
sulting (random) sequence of labelings converges in dis-
tribution to the posterior. To extremize the posterior,
one ‘sharpens’ the distribution by decreasing a scale pa-
rameter slowly to zero, and the resulting labeling is the
MAP estimate.

3 Initial Results

Sample results are shown in figure 4. The first panel
shows a piece of a chromospheric image from January
1980 with a plage in the lower-right corner. Beside this
is the corresponding threshold segmentation. The abun-
dant speckle is consistent with the implicit prior that is
uniform over all labelings. In the final panel is the MAP
segmentation with MRF prior at 8 = 0.7. The estimate
is found by the standard Gibbs sampler approach with
temperature lowered in steps over 800 image sweeps. We
note that the MAP/MRF segmentation eliminates many
of the tiny gaps in the large plage and makes the network
structure more apparent.

The segmentations are a milestone in this part of the
effort in solar image processing at JPL. The goal is to de-
termine model parameters valid across several months’
worth of images, to to find labelings for each such im-
age, and thus obtain a time series of overall areas and
average intensities for each of the three classes. This
information can then be used as input to existing solar
irradiance models and validated against measurements
from space-borne UV monitoring instruments such as
UARS/Solstice [12].

4 Spatial Descriptions

Now we address the second of the concerns raised in the
introduction, that of representing and analyzing plage
and network shape. The network shape is the simpler
because it is homogeneous across the solar sphere. One
way to model the network/background relationship is
via a binary MRF texture model [4] of the attraction-
repulsion type. In such a model the conditional distri-
butions corresponding to (4) become, for k =1, 2,

P(J}s = k‘|l‘N(s)) =
Z; explou + Zﬁ(s’ —s)1(zs = k)] (7)

s'€N(s)

where the radially symmetric kernel 3(+) is positive near
the origin and negative near the edge of the neighbor-
hood, and the constants aj are chosen to adjust overall
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Figure 4: On the left is a detail of the original image, containing network and plage elements. The center panel
shows the threshold segmentation and on the right is the MRF segmentation with G = 0.7.

class probabilities. (The background/network interplay
of the model (4) is obtained with a kernel of constant
value on N(s).) The effect is to encourage clumps of
equal labels, but to encourage those labels to change at
some distance from the center; the kernel essentially acts
as a template of class agreements.

In contrast to the essentially pixel-scale characteris-
tics of the magnetic network, plages are high-level phe-
nomena which are not well-captured by pixel-level rules.
Following the lead of Grenander [7], we therefore pursue
a hierarchical representation of plages. We will find it
convenient to embed the pixel sites N in a bounded con-
tinnum N C R2. To represent a plage, or a cluster of
related plages, we propose a tent-like structure defined
by a triangulated planar graph

G=(V, E, h) ®)
VCcN a vertex set

Ec N? an edge relation

h:V —10,1] a height function

The height function is extended to all of N as follows.
Each point in N is either on an edge of G, in the in-
terior of exactly one triangle of G, or outside all of the
triangles. In the first two cases, linear interpolation is
used to find the height of the point, otherwise the height
is taken as zero. This structure is intended to model
the “degree of membership” of a given pixel in the plage
class, allows the binding of nearby plage regions into
one coherent object. We note that, if the height func-
tion is thresholded at a given level, the resulting shape is
a cluster of regions bounded by (not necessarily convex)
polygons. This is similar to the way scientists currently
delimit plage regions manually. An example of a plage
graph is in figure 5.
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Figure 5: The first panel shows an air view of a ridge
structure. The next is a perspective view of the same
structure; the vantage point is at the northwest corner
looking southeast.



Figure 6: The first panel shows a height function derived from a randomly generated plage graph. In the second is
a realization of a random labeling implied by that height function, and finally a simulated solar image.

To define a probability distribution on these struc-
tures, we generate each as the Delaunay triangulation [1]
of independently chosen points in N. These points com-
prise V, and F is generated mechanically as the Delau-
nay triangulation of V. The heights can then be assigned
independently to the interior members of V', and set to
zero otherwise. The probability density of such a planar
graph is then

P(G) _ Z—le—'ycard(V) (9)

and zero if the graph is not generated as such a triangu-
lation. We have assumed the members of V' are chosen
according to the uniform distribution on N, and that the
heights are uniform on [0, 1]. While refinements (such as
self-avoiding vertices and correlated heights) are possi-
ble, their ultimate effect in the presence of data would
be minimal and not worth the added model complexity.
Another advantage of this distribution is that additions,
deletions, and adjustments of one vertex have a simple
effect on the cost, and a local effect on the triangulation
and the resulting cost function.

Incorporating the new structure into the existing
MRF model is simple. The graph yields an extended
height function hg, which in turn becomes a spatially-
varying bias on the smoothness prior (4):

P(xs = 3|$N(s)7 G) =
Z 7 exp[=B) zg # k) + d(ha(s))]  (10)

s’eN(s)

Here ¢ is a smooth, monotone function; below, we have
simply used the identity.

The combination of the conditional probability mod-
els (7) and (10) allows us to generate random height
functions, labelings, and images that are more physically

reasonable than the initial MRF scheme. Figure 6 shows
a height function hg(s) corresponding to a randomly-
chosen ten-vertex graph. A corresponding pixel-level
MRF labeling is in the next panel; it was obtained after
100 iterations of the Gibbs sampler applied to (10), again
with 8 = 0.7. The last frame is an observation from the
full image model. Intensities have been assigned to each
pixel based on the lognormal model fitted to observed
histograms and the result blurred with a gaussian PSF
of full-width half-max of 7 pixels, reasonable for this im-
age set. These images are intended to give a qualitative
understanding of the potential of the models discussed
here, as well as crude confirmation that the results are
physically reasonable.

Essentially the same procedure outlined in section 2
can be followed for inference. Now the labels together
with the height function or plage graph are to be in-
ferred. There are two types of movement in the param-
eter space: updating a label, which is done by a Gibbs
sampler step, and altering the plage graph, which can
be done by a Metropolis step [3]. Such a step proceeds
by proposing a small parameter change and choosing to
make the jump randomly depending on the computed
ratio of probabilities. A hierarchical overall updating
scheme can be employed, in which the class labels are
inferred given the data, and the plage graph gives struc-
ture to the class labels. Computationally efficient means
of interleaving these steps are now under development.

5 Conclusions
Decomposing solar images into their component parts

and understanding the evolution of solar active regions
are questions of scientific interest, and years-long image



datasets are available from several sources for analysis.
Currently, scientists often label images manually, or by
thresholding the observed intensities. The use of MRF
image priors allows the controlled, objective incorpora-
tion of simple kinds of prior knowledge about the spatial
coherence of labels. By incorporating these priors in a
Bayesian inference setup, images are segmented without
the speckle artifacts associated with threshold labeling.
To aid scientists in understanding this data set and al-
low analysis of these images, we have linked the algo-
rithms described in sections 1.2 and 2 to a graphical
interface called StarTool (Solar feature Tracking, Analy-
sis, and Representation Tool). The application, built on
top of SAOtng package [10], allows interactive loading
and examination of images in several formats including
the standard astronomical FITS format. Once loaded,
images can be preprocessed and labeled by scientists, as
well as decomposed via the MRF setup described previ-
ously. This provides an extensible interface for scientists
to examine, label, and segment solar images.

In an effort to understand the temporal evolution of
plage shapes, we have proposed a representation of ac-
tive regions in terms of a triangulated graph which gives
rise to a membership function. The resulting synthesized
images appear physically realistic, and methods are be-
ing developed to infer the labels and the graph from
observed data.
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